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Purpose. The human pregnane X receptor (PXR) is a transcriptional regulator of many genes involved in
xenobiotic metabolism and excretion. Reliable prediction of high affinity binders with this receptor would
be valuable for pharmaceutical drug discovery to predict potential toxicological responses
Materials and Methods. Computational models were developed and validated for a dataset consisting of
human PXR (PXR) activators and non-activators. We used support vector machine (SVM) algorithms
with molecular descriptors derived from two sources, Shape Signatures and the Molecular Operating
Environment (MOE) application software. We also employed the molecular docking program GOLD in
which the GoldScore method was supplemented with other scoring functions to improve docking results.
Results. The overall test set prediction accuracy for PXR activators with SVM was 72% to 81%. This
indicates that molecular shape descriptors are useful in classification of compounds binding to this
receptor. The best docking prediction accuracy (61%) was obtained using 1D Shape Signature descriptors
as a weighting factor to the GoldScore. By pooling the available human PXR data sets we revealed those
molecular features that are associated with human PXR activators.
Conclusions. These combined computational approaches using molecular shape information may assist
scientists to more confidently identify PXR activators.

KEY WORDS: docking; hybrid methods; machine learning; pregnane X receptor; shape signatures
descriptors; support vector machine.

INTRODUCTION

The transcriptional regulation of genes involved in
xenobiotic metabolism and excretion is an important area of
study, in particular the human pregnane X receptor, PXR
(NR1I2; also known as SXR or PAR) has been a particular
focus since its identification (1–6). PXR activators include a
wide range of structurally diverse endogenous bile acids,
hormones, dietary vitamins, prescription and herbal drugs as
well as environmental chemicals. PXR activators can mediate
potential drug–drug interactions and the toxic effects of

environmental chemicals (7,8), hence the need to develop
reliable prediction methods.

Four PXR X-ray crystal structures are available in the
Protein Data Bank (PDB), which have enabled characteriza-
tion of the ligand binding domain (LBD). The pocket is lined
with 28 amino acid residues: 20 hydrophobic, four polar and
four charged (9–14). Due to the large size of the binding
pocket, molecules can bind in multiple locations, which
hinders reliable prediction of PXR activators (A) or non-
activators (N) using structure-based virtual screening meth-
ods. Several previous studies have constructed ligand-based
computational models for human PXR employing pharmaco-
phores (15–18), quantitative structure–activity relationships
(QSARs) (19–21), and machine learning methods (21). For
example, the human PXR agonist pharmacophore models
contain multiple hydrophobic features, at least one hydrogen
bond acceptor and, in some cases, an additional hydrogen
bond donor feature which are deemed important for molec-
ular recognition of ligands by PXR.

The absence of large biological data sets for PXR ligands
has hampered efforts to build QSAR models for quantitative
predictions (22). The sparse amount of data is more suitable
for classification models than quantitative prediction models.
Several studies using qualitative data sets (≥99 molecules)
have employed machine learning methods such as recursive
partitioning (RP), random forest (RF), support vector
machine (SVM), K-nearest neighbors (K-NN), and probabi-
listic neural networks (PNN) (21,22) to distinguish between
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human PXR activators (A) and non-activators (N). In the
latter case (22), binary classification models generated from
98 human PXR activators and 79 non-activators were used to
predict between 80.8% and 85.0% of human PXR activators
and 67.7–73.6% of human PXR non-activators (in the
training set). The test set prediction accuracies in this same
study ranged from 53.3% to 66.7% for 15 known human PXR
activators across the three machine learning methods, with
SVM performing the best (22). We have recently constructed
human PXR classification models based on VolSurf (23) 3D
descriptors employing RP, RF and SVM machine learning
methods, and made predictions for a new large external test
set of 145 molecules (not included in the training set) to
validate and compare these three approaches (24). Our
results were a significant improvement on those previously
published (22). We also have previously utilized structure-
based docking using FlexX combined with logistic regression;
however, the overall results were disappointing and inferior
to those obtained using the machine learning methods.
However, when the docking predictions were correct, the
docked orientations were useful for comparison with struc-
turally similar molecules that were PXR non-activators (24).
To the best of our knowledge there have been no other
published direct comparisons of docking and QSAR methods
for PXR with a large external test set containing diverse
xenobiotics, although pharmaceutical companies are very
likely to have done such studies in house.

In the current study we have greatly extended our
previous work to use additional molecular descriptors,
namely Shape Signatures and MOE, which have been
recently applied to cardiotoxicity target proteins and blood–
brain barrier data with machine learning classification meth-
ods (25,26). In these previous studies, it was found that 2D
Shape Signature descriptors slightly outperformed 1D Shape
descriptors with the SVM algorithm. Additionally SVM
models based on Shape Signatures also performed slightly
better than those developed with the MOE descriptors for the
same datasets (25,26). In the current study we have also used
an additional docking method GOLD (27–29) and a novel
aspect of this study (with respect to PXR) is our coupling of
the GoldScore with other scoring functions in an attempt to
improve the overall docking results. We have also combined
all the available human PXR data sets (∼300 molecules) into
a single model in order to identify specific molecular
descriptors that correlate highly with human PXR activation.
Through judicious combination of these computational
approaches, we have identified new computational models
that can predict human PXR activators with applicability
ranging from drug discovery to toxicological sciences.

MATERIALS AND METHODS

Data Compilation

A comprehensive human PXR dataset was assembled
from two previously published datasets, as described in detail
elsewhere (22,24). Briefly, the first set (training compounds)
retrieved 168 compounds from data published by Ung et al.
(22) comprising 93 that were defined as activators (EC50<
100 μM) and 75 as inactivators (EC50>100 μM). The second
set (test compounds) taken from our previous work (24)

contained 130 compounds, comprising 71 human PXR
activators and 59 non-activators. Using the SMILES strings
taken from the original papers as input, each compound was
geometry optimized to a low energy conformation generated
by CORINA (Molecular Networks GmbH, Nägelsbachstr. 25,
91052 Erlangen, Germany. http://www.mol-net.de) and
assigned partial atomic charges according to the Gasteiger-
Marsili scheme (30).

Molecular Descriptors

Structural analysis of the four available human PXR
crystal structure complexes with their ligands from the PDB
(PDB IDs: 1M13, resolution 2.00 Å (10), 1SKX, resolution
2.80 Å (14), 2O9I, resolution 2.80 Å (13) and 1NRL,
resolution 2.00 Å (9)) revealed that the docking of the four
agonists was dominated by electrostatic and van der Waals
interactions. To capture these ligand-protein interaction
features into our classification scheme we chose 20 molecular
descriptors that represented shape and size (volume, weight,
KierA1-A3, Kier1-3), flexibility (number of rotatable bonds,
number of rings and KierFlex) and electrostatic features
(logP, topological polar surface area (TPSA), logS, Lipinksi
donor (lip_don), Lipinski acceptor (lip_acc), number of N
atoms, and number of O atoms). Values for these specific
molecular descriptors were calculated using the Molecular
Operating Environment (MOE, Chemical Computing Group,
Montreal, Canada) modeling program. In addition, we used a
shape based descriptor method called Shape Signatures (31)
to build SVM based classification models for the PXR
activators and non-activator sets.

Shape Signatures Molecular Descriptors

Shape Signatures (31) is a novel shape matching
algorithm that has been previously described (25,26,31,32)
which allows fast comparison between any pair of typical
drug-like molecules. In this method, molecular features such
as shape and distribution of partial charges, which are critical
for competent binding and hence the relative biological
activity of the compound are encoded in the form of the
one-dimensional (1D) and two-dimensional (2D) histograms.
Here we will briefly outline the key steps of the algorithm.
The process starts by generating a single low energy three-
dimensional conformation (a default conformation) of a
molecule under consideration using CORINA from a sup-
plied SMILES string. In the second step, the solvent
accessible surface (SAS) is constructed around the molecule
which is followed by triangulation of the SAS by the SMART
program (31). Next, a customized ray-tracing algorithm is
used to explore the volume enclosed by the SAS. During this
stage, a ray of light, emitted initially from a randomly selected
point on the interior lining of the SAS, travels inside the
molecular compartment bounded by the SAS until it strikes
the opposite side, at which point it gets reflected back and
propagates further in the direction determined by law of
optical reflections. For each reflection point, the value of the
truncated Coulomb potential or the molecular electrostatic
potential (MEP), and the lengths of the incident and reflected
ray segments are recorded and stored in the memory. It was
determined empirically that for a typical drug-like molecule
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100,000 reflections are sufficient for the paths of the rays to
thoroughly survey the molecular volume enclosed by SAS. At
the end of the run, the ray segments are binned by their
length into a one-dimensional histogram with the predefined
bin width of 0.5 Å (1D signature) and a two-dimensional
histogram is constructed with the MEP values (with a step of
0.05e/Å) and the associated total length of the two path
segments joined by the reflection point (2D signature). Both
histograms are then normalized.

Similar to previous applications (25,26) for each com-
pound in this study, the heights of the bins of the associated
1D (shape only) and 2D (shape and polarity) Shape Signature
histograms constituted two sets of distinct molecular descrip-
tors. It is important to stress that despite being represented as
1D and 2D histograms, these Shape Signatures descriptors
are inherently three-dimensional molecular descriptors since
they encode the 3D conformation and polarity of the
molecule.

Docking and Scoring

A combined data set consisting of 297 molecules from
the test and the training sets described above along with the
four ligands (hyperforin, rifampicin, T0901317 and SR12813
that were co-crystallized with the human PXR receptor) were
used for docking experiments. The molecules were docked
into these four crystallized structures of human PXR (PDB
IDs described above). In all cases, the crystal structure ligand
was removed, and hydrogen atoms were added to the amino
acids. All amino acids within 6 Å of the co-crystallized ligand
were identified as the binding site. The docking program
GOLD (ver 4 (29)) was used for docking all the 301
compounds to the binding sites of each PXR crystal structure.
GOLD (ver 4) uses a genetic algorithm to explore the various
conformations of ligands and flexible receptor side chains in
the binding pocket. Further, 30 independent docking runs
were performed for each ligand. The docked complexes were
initially scored with GoldScore (29) and then rescored using
ChemScore (33). The best ranking conformation for each
ligand was chosen based on the most favorable binding
energy (ΔG values from ChemScore) and the corresponding
GoldScore of that conformation was used for further scoring
procedures. Various cutoffs of the GoldScore were used to
classify compounds into PXR activators and non-activators.
The Score-1 scheme used 50% of the GoldScore of the crystal
structure ligand as a cut-off, while Score-5 used the Gold-
Score of the crystal structure ligand −10 as a cut-off, and
Score-6 used the GoldScore of the crystal structure ligand −30
as a cut-off. A number of additional customizable scoring
schemes were also tested for classifying the compounds as
activators and non-activators and the scoring schemes are
further described below:

1. Contact scoring scheme (Score-2): The docked recep-
tor–ligand complexes were scored using a contact
based scoring function. Accordingly, an in-house
program was used to examine the docked complexes
for contacts between the ligand and protein atoms
(34). Further, these contacts were scored based on a
weighting scheme that was derived from the nature of
interaction between the ligands co-crystallized with

human PXR. For example, hyperforin forms hydrogen
bonds with residues Gln285, His407 and Ser247 of the
PXR protein in the crystal structure (PDB ID:1M13;
Supplemental Figure 1). Thus the contact scoring
function overweighted all those docked protein–ligand
complexes that featured hydrogen bonding between
the ligand and these three residues. Similarly, other
non-bonded interactions were weighted based on the
interactions of the ligands in the PXR crystal struc-
tures. All interaction scores were then summed and
normalized for the 301 compounds against all four
crystal structures. A consensus scoring scheme was
developed for final classification based on the follow-
ing rule: Only those compounds that equaled or
exceeded half the value of the highest GoldScore
and exhibited a non-zero contact score were assigned
as activators while the remaining were classified as
non-activators.

2. Shape based scoring scheme: In this scheme, the
ligands from the combined dataset were compared
with the PXR ligands from the four crystal structures
for their shape based similarities using two different
approaches. The first was based on 2D similarity
encoded in MDL fingerprint keys calculated using
Discovery Studio 2.0 (Accelrys, San Diego, CA,
USA). The Tanimoto coefficient was used as the
metric to compare the molecular fingerprints. The
coefficients varied between 0 and 1, where 0 meant
maximally dissimilar and 1 coded for maximally
similar. The Tanimoto coefficient between fingerprints
X and Y has been defined to be: [number of features
in intersect (A, B)]/[number of features in union (A,
B)], where A and B are two compounds.

In the second approach, the 3D shapes of the
molecules from the combined dataset were compared
with the shapes of each of the four crystal structure
ligands. This was achieved by comparing their
corresponding 1D Shape Signatures and a dissimilar-
ity score was computed for each ligand pair (see
description for Shape Signatures below). The dissim-
ilarity score was then converted to a similarity score,
which was in turn used as weighting factor for the
GoldScore to compute Score-4. In all these scoring
schemes the consensus score was calculated as shown
below in Eq. 1.

3. Molecular descriptor based scoring: In this scheme,
the molecular descriptors computed using MOE were
used to calculate Euclidean distances from the four
crystal structure ligands. These Euclidean distances
were used as weighting factors to compute Score-7.
Similarly, the values of the molecular descriptors were
also used to calculate Tanimoto similarity indices (35)
with reference to the four crystal structure ligands.
For a pair of descriptor vectors with continuous
variables, the Tanimoto index ranged from −0.33
(when one vector is the inverse of another) to 1 (for
two identical vectors). The values for the Tanimoto
indices for each ligand in the combined set were
calculated against each of the crystal structure ligands
and then used as weighting factors to the GoldScores
to compute Score-3.
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The weighted docking score of an active compound j
with i conformations was described as

Si;j ¼ wisij ð1Þ

where sij was the original GoldScore for the compound i in its
jth conformation and wi is the weighting factor for compound
i from either of the schemes described above.

Classification by Support Vector Machines

The SVM method (36, 37) is a powerful machine
learning classification technique that has been used widely
to tackle complex binary classification problems (22, 38–40).
Following our previous studies (25, 26) we have used the
freely available program LIBSVM (C-SVM)(41) with the
radial basis function (Gaussian) kernel, whose parameter γ
along with the SVM penalty term C were determined in each
case through a simple grid search procedure by tenfold cross
validation.

In addition to the libraries of 1D and 2D Shape
Signatures generated for the datasets described in the
previous section, in this study we also explored a number of
mixed descriptor schemes. In particular, we combined Shape
Signatures and MOE molecular descriptors to investigate the
performance of these classification models with those built
entirely with either Shape Signatures or MOE descriptors.
Also, we have combined docking scores, GoldScores and

contact scores, with the set of MOE descriptors and evaluated
the performance of the SVM models utilizing this hybrid
descriptor scheme. In total, we have considered six different
descriptor approaches (Table I): 1D Shape Signatures, 1D
Shape Signatures + MOE, 2D Shape Signatures, 2D Shape
Signatures + MOE, MOE alone and MOE + GOLD docking.

SVM Model Testing

The predictive nature of each SVM model described
herein was assessed by computing a standard set of statistical
indicators: sensitivity (SE), specificity (SP), overall prediction
accuracy (Q) and Matthews correlation coefficient (C) (22,
42). These quantities are defined in terms of the numbers of
true positives (TP), true PXR activators, false positives (FP),
falsely classified PXR non-activators, true negatives (TN),
true PXR non-activators and false negatives (FN), falsely
classified PXR activators. In these notations, the total number
of real experimentally documented activators is given by TP +
FN whereas a corresponding number of real non-activators is
TN + FP. Sensitivity, SE=TP/(TP+FN), then expresses the
prediction accuracy of a classification model with respect to
PXR activators while specificity reflects the prediction
accuracy for non-activators: SP=TN/(TN+FP). The overall
prediction accuracy is calculated as Q=(TP+TN)/B(TP+FP+
TN+FN). Finally, we also report the values of Matthews
correlation coefficient described as in Eq. 2.

C ¼ TP� TN� FP� FN½ �
,

TPþ FNð Þ TPþ FPð Þ TNþ FPð Þ TNþ FNð Þ½ �1=2 ð2Þ

This represents another measure of the overall prediction
performance. For a perfect classifier with FP=FN=0 one
would have C=1.0. For a random prediction, C≈0, and for a
complete inversion (TP=TN=0) C=−1.0.

In order to carefully examine the quality of the proposed
SVM models we used the following procedure for model
validation as used previously (25,26). Prior to submitting data
for SVM analysis, the dimensionality of the input datasets in

Table I. Ranking of hPXR SVM Models Based on their Performance for Different Datasets

Rank\dataset Training Test Combined

1 1DSS + MOE MOE MOE
C=0.531, QLN=77% C=0.464, QLN=74% C=0.466, QLN=74%
QCV=81% QCV=78% QCV=77%

2 2DSS + MOE 2DSS + MOE 1DSS + MOE
C=0.431, QLN=72% C=0.370, QLN=69% C=0.413, QLN=71%
QCV=75% QCV=73% QCV=73%

3 MOE MOE + DOCK MOE + DOCK
C=0.405, QLN=71% C=0.327, QLN=67% C=0.369, QLN=69%
QCV=76% QCV=72% QCV=73%

4 1DSS 2DSS 2DSS + MOE
C=0.392, QLN=70% C=0.305, QLN=66% C=0.361, QLN=69%
QCV=74% QCV=72% QCV=73%

5 2DSS 1DSS + MOE 2DSS
C=0.345, QLN=68% C=0.289, QLN=66% C=0.349, QLN=68%
QCV=73% QCV=72% QCV=70%

6 MOE + DOCK 1DSS 1DSS
C=0.326, QLN=67% C=0.173, QLN=60% C=0.283, QLN=65%
QCV=72% QCV=68% QCV=70%

C and QLN were computed from 100 independent leave-20%-out runs and QCV from tenfold cross validation conducted on the entire dataset
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each case was reduced by means of the unsupervised forward
selection (UFS) method of Livingstone and co-workers (43).
This program eliminates redundancy and reduces multi-
collinearity of the original datasets. Two families of SVM
models were then built for each dataset/descriptor set pair.
The models in the first group were generated by tenfold cross
validations conducted on the entire dataset. The overall
prediction accuracies for these models are denoted by QCV.
The models comprising the second group were averaged over
a series of 100 independent leave-20%-out runs (overall
accuracies QLO). The leave-20%-out tests were designed as
follows: For each dataset, about 20% of the molecules were
randomly picked to represent the hold-out test set and the
rest of the data constituted the training set for this particular
data division. The selection was carried out to approximately
preserve the correct proportion of PXR activators and non-
activators in both sets. Each SVM classification algorithm was
then trained on the training set and applied to predict class
attributes of the compounds in the test set. To obtain more
reliable statistical estimates, the procedure was repeated 100
times, each time with a different composition of the test and
training sets.

RESULTS

The combined dataset consisting of 301 compounds
including the four PXR co-crystallized ligands were docked
using GOLD to the four crystal structures of human PXR
(1M13, 1NRL, 1SKX and 2O9I) available in the PDB
(Supplemental Figure 1). The four co-crystallized ligands
were docked to their respective crystal structures within 0.2–
0.6 Ǻ root mean square deviation (rmsd). Cross docking of all
the four ligands to all the crystal structures was achieved with
no significant deviations to the binding site or binding mode,
except for the case of rifampicin which docked in a flipped
mode to structure 1M13 (Supplemental Figure 2). The cross
docking of the co-crystallized ligands yielded an rmsd in the
range 0.34–1.05 Ǻ relative to their corresponding crystal
structure conformations, confirming the validity of these
human PXR crystal structures for docking studies under the
conditions described in this study. In all the cross-docking
studies, hyperforin docked with the best score, followed by
SR12813, rifampicin and T0901317 (Table II). Structural
similarity analysis using MDL keys with a cut off value of
0.5 showed that only 26% of the ligands from the combined
dataset shared 2D structural similarity to hyperforin and 15%
of the ligands to rifampicin and little or no similarity to
SR12813 and T0901317. Hence, we used all four crystal
structures in order to dock all the ligands.

It is reasonable to assume that molecules which are more
structurally similar to the four crystal structure ligands
(hyperforin, rifampicin, T0901317 and SR12813) would have
a better chance to be successfully docked to the receptor than
structures sharing less similarity with these ligands. Based on
this premise, we devised and tested novel scoring schemes for
molecular docking which accounts for such molecular simi-
larity via incorporation of the specially designed weighting
factors. According to this scheme, the compounds which were
structurally closer to the known ligands were weighted more
favorably than those that were dissimilar in the space of the
chosen molecular descriptors. A set of molecular descriptors
were identified that clustered PXR activators closer to the
four crystal structure ligands and non-activators further away
in terms of similarity. This was achieved by computing
similarity scores for every molecule in the combined dataset
(297 structures) with respect to each of the four co-
crystallized ligands. The resulting list was ranked according
to the similarity scores and the positions of PXR activators
and non-activators were analyzed. Three sets of molecular
descriptors were considered: 1D Shape Signatures (shape);
2D Shape Signatures (shape and electrostatics); and MOE
(shape, flexibility, electrostatics and hydrogen bonding). For
binned data (1D and 2D Shape Signatures), a χ2-based
distance metric commonly used for comparing discrete
distributions was used. For MOE descriptors, Tanimoto
similarity scores were calculated for descriptor vectors with
continuous variables (35). To better understand this ranking
system based on molecular similarity across all combinations
of crystal-structure ligand and molecular descriptors sets, a
hit rate (HR) analysis (43) was conducted as depicted in
equation 3. The HR monitors the fraction of observed
activators (Nact%/Nact) at the fixed portion of the list (sorted
database) screened (N%/Ntot).

HR ¼ Nact%=Nactð Þ= N%=Ntotð Þ ð3Þ
where Nact=163 molecules, Ntot=297 molecules, Nact% was
the number of activators listed among the top N% of the
ranked list screened. For a uniform distribution of PXR
activators and non-activators across the sorted list, meaning
that there was no preference between activators and non-
activators in terms of their structural similarity to the given
ligand, HR≈1 for any percent of the database screened. For
a perfect separation, when all activators ranked above all
non-activators, the (Nact%/Nact) vs. (N%/Ntot) curve would
be expected to lie above the random line and plateau at 1
for N%/Ntot=0.55. As can be concluded from Fig. 1, the only
set of molecular descriptors for which the HR curves was
consistently placed above the random selection line was the
1D Shape Signatures descriptors, which characterize
molecular shape and size. In this case, at 55% of the
database, 60% to 65% of all activators were recovered
depending on the crystal structure ligand.

Based on the HR performance summarized in Fig. 1, 1D
Shape Signatures descriptors were used to design a structural
similarity weighted scheme (scheme-4) scoring function for
docking. The raw docking scores for the four ligands to the
four crystal structures are shown in Table II. The docked
structures were classified as activators (A) and non-activators
(N) based on the various scoring schemes (Table III and
Supplemental Table VIII). Scoring scheme-1 was devised to

Table II. Raw Docking Scores (GoldScores) for the Four Crystal
Structure Ligands Docked to the hPXR Crystal Structures

Structure Hyperforin SR12813 Rifampicin T0901317

1M13 79.97 70.81 59.21 45.08
1NRL 78.28 64.04 49.05 45.97
1SKX 88.31 66.88 65.76 45.61
2O9I 87.19 71.22 51.69 47.98
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use 50% of the raw GoldScore (listed in Table II) as a cutoff
for the A and N classification. The average Q value in this
scheme for all the four structures was ∼55. Similarly, scheme-
5 used the raw GoldScore of the PXR crystal ligand −10 as a
cutoff, while scheme-6 used raw GoldScore −30 as a cutoff.
The results show a Q value in the range of 45–57% and 47–
56% for schemes 5 and 6 respectively. Changing the cutoff for
the raw docking scores did not enhance the classification rate
as shown in scoring schemes-5 and 6.

Scoring scheme-2 which was derived based on the
contact scores had Q values were in the range of 44% to
56% but the C values were mostly negative indicating a
performance that was worse than random. Scoring scheme-3
that takes into account the Tanimoto indices built from
molecular descriptors derived from MOE yielded an average
success rate of ∼48% and C values were negative for the four
crystal structures (except 2O9I). These results suggest that
combining the similarity indices with docking scores may have
limited utility as a scoring scheme which was is also reflected
in the SVM based model (see Supplementary Table VI).
Similar results were obtained from scheme-7 (Supplementary
Table VIII) that was based on intermolecular Euclidean
distances instead of the Tanimoto indices.

Further analysis of the docking results showed that
among all the docking scoring schemes, scheme-4 performed
the best in identifying PXR activators and non-activators with
a Q value of 61% (C=0.209) for 1M13 followed by Q value of
60% (C=0.211) for 1NRL crystal structures. The perfor-

(a)

(b)

(c)

Fig. 1. Results of the hit rate analysis conducted for a number of
molecular descriptors schemes for four endogenous PXR ligands:
T0901317 (red), hyperforin (green), rifampicin (blue) and SR12813
(purple). a 1D Shape Signatures descriptors. b 2D Shape Signatures
descriptors. c MOE molecular descriptors.

R

Table III. Docking Results for the Combined Dataset to the Four
hPXR Crystal Structures with Scoring Schemes 1–4

Scheme/structure 1M13 1NRL 1SKX 2O9I

Score-1 SE (%) 94 98 100 98
SP (%) 11 2 3 4
Q (%) 57 55 56 56
C 0.092 −0.013 0.129 0.057

Score-2 SE (%) 43 61 88 64
SP (%) 46 30 11 46
Q 44 47 54 56
C −0.103 −0.096 −0.006 0.104

Score-3 SE (%) 40 38 33 41
SP (%) 59 60 62 59
Q 49 48 46 49
C −0.007 −0.019 −0.047 0.005

Score-4 SE (%) 75 63 40 57
SP (%) 45 58 73 54
Q 61 61 55 56
C 0.209 0.211 0.149 0.119

Sensitivity (SE), specificity (SP), overall prediction accuracy (Q) and
Matthews correlation coefficient (C) are described in the text

1006 Kortagere, Chekmarev, Welsh and Ekins



mance of scheme-4 for 1SKX and 2O9I was very similar with
an average Q value of ∼55.5% (C=0.149 and 0.119 respec-
tively). Scoring scheme-4 was constructed using 1D Shape
Signatures as a weighting factor to the GoldScore. In fact, HR
analysis showed that 1D Shape Signatures could correctly
identify nearly 64% of the compounds as PXR activators.
Thus utilizing the 1D scores of compounds to the 4 crystal
structure ligands improved the classification rate of the raw
docking scores (score-1) from 56% to 61% for 1M13 and
54% to 60% for 1NRL structures.

Finally, a consensus scoring approach based on a
majority vote for all the crystal structures using scheme-4
was built (Supplemental Table IX). Based on the consensus
analysis we found that many of the activators such as 3-
ketolithocholic acid and ritonavir were correctly predicted to
be activators and their interactions in the binding site
mimicked those of the crystal structure ligands (Fig. 2A, B).
Similarly, the non-activators such as clofazimine and 3-MC,
although docked to the same binding pocket and sharing 2D
structural similarities, did not have the same set of molecular

interactions (and hence poor binding energetics) with the
receptor as that of the crystal structure ligands (Fig. 2C, D).
We also found some cases where PXR non-activators such as
amiodarone (Fig. 3A) and levonorgestrel (Fig. 3B) were
predicted to be activators and conversely PXR activators such
as amentoflavone (Fig. 3C) and monobenzylphthalate
(Fig. 3D) were classified as non-activators based on the
consensus scoring scheme.

The results of SVM classifications for 18 combinations of
PXR dataset—descriptor sets have been summarized in Table I
and a detailed analysis for each model can be found in the
Supplementary Tables I–VII. For each dataset, SVM models
were ranked according to their performance in the leave-20%-
out internal testing. In order to provide a comparison to the
results from the previously published studies on the same
dataset (22,24) we have chosen to use QCV (Q values from
cross validation) for the SVM models. Overall, SVM models
based on MOE descriptors and two mixed descriptor schemes
1D Shape Signatures + MOE and 2D Shape Signatures + MOE
performed best. In each case, the difference in the overall

Fig. 2. Schematic representation of the binding mode of A 3-keto lithocholic acid B Ritonavir C Clofazimine and D 3-MC in the binding site of
crystal structure of human PXR protein (PDB code: 1M13). The binding site residues are colored by their nature, with hydrophobic residues in
green and charged residues in purple. Blue spheres and contours indicate matching regions between ligand and receptors. The schematic
pictures were generated using LIGX option in MOE.

1007Hybrid Scoring and Classification Methods



accuracy QLN between the best and worst models was between
9% and 14%. Further, mixing MOE descriptors with the
original docking scores failed to improve the quality of SVM
models (Supplemental Table VI).

Further, to probe the overlap between the regions of the
chemical space occupied by molecules from the training and
test sets, we conducted principal component analysis (PCA)
which can provide valuable information regarding the relative
position of the chemical structures in the space defined by the
molecular descriptors. As clearly shown in Supplementary
Figure 3A, compounds from the two sets are intermixed in
the space of the MOE molecular descriptors, which validates
the results of the cross-set predictions described above.
Similar observations were found in previous studies using
other molecular descriptor schemes (24,25). We also clustered
these compounds using the molecular descriptors with the

Unweighted Pair Group Method with Arithmetic Mean
algorithm (UPGMA). This represents a simple agglomerative
clustering method which is based on unweighted average
distances between the nodes (Supplementary Figure 3B).
These results confirm that our test and training sets represent
similar chemical space.

DISCUSSION

PXR is a member of the nuclear receptor family of
ligand-activated transcription factors and is an integral
component of the body's defense mechanism against toxic
endobiotics and xenobiotics. The binding of structurally
diverse ligands is made possible by the large volume and
shape of the largely hydrophobic ligand-binding pocket. This

Fig. 3. Schematic representation of the binding mode of A Amiodarone B Levonorgestrel C Amentoflavone and D Monobenzyl phthalate in
the binding site of crystal structure of human PXR protein (PDB code: 1M13). The binding site residues are colored by their nature, with
hydrophobic residues in green and charged residues in purple. Blue spheres and contours indicate matching regions between ligand and
receptors. The schematic figures were generated using LIGX option in MOE.

1008 Kortagere, Chekmarev, Welsh and Ekins



also presents problems for computational modeling which is
compounded by the lack of specificity, generally low micro-
molar affinity and wide structural variability among the
ligands that bind to this receptor. The main emphasis of this
study was therefore to develop scoring functions and machine
learning based methods that can capture the binding modes
of structurally dissimilar ligands binding to PXR. Further, the
compounds were classified as PXR activators and non-
activators using various custom and hybrid scoring schemes.
Other classification schemes such as SVM based machine
learning models with a variety of molecular descriptors were
also used for classification.

We have demonstrated for the first time that there is no
significant difference between the four available crystal
structures for PXR when using GOLD for docking ligands
to the hypothesized ligand binding domain (agonist) site as
evidenced by the small rmsd values in the docking and cross
docking experiments. This would suggest that any of the four
structures could be used for docking with GOLD without
seeing appreciable differences.

We have also shown that the 2D Shape Signatures and
MOE descriptor schemes (which, in addition to shape, also
account for electrostatic features and other molecular prop-
erties) surprisingly performed poorly when used in an
attempt to create a hybrid scoring function. These observa-
tions confirmed that the dividing boundaries between activa-
tors and non-activators were indeed likely to be complex.
Hence, sophisticated machine learning methods like SVM
were needed to build reasonable classification models.
Scoring scheme-2 which was derived based on the contact
scores did not perform as well as in previous studies with
other targets such as GPCRs (34). This could be due to the
fact that contact scores bias the scoring scheme by weighting
those ligands that bind to the receptor in a similar mode as
the crystal structure ligands. This scheme of biasing works
well when the ligands have very high specificity towards the
target such as GPCRs (34).

Scheme-4 performed the best in identifying PXR activa-
tors and non-activators with Q and C values that show a
considerable apparent improvement when compared to the
earlier FlexX docking and logistic regression scoring scheme
for these same compounds (24). The previous docking efforts
resulted in random results and highlighted the difficulty in
docking in a large binding pocket for such a flexible protein.
In the current study, the primary reason for any docking
misclassifications may be due to the non-activators having
very similar 1D Shape Signatures to the crystal structure
ligands that were classified as activators and vice versa.
Consequently, in the context of classification of molecules as
potential PXR activators, the direct unprocessed results of
docking experiments would appear of limited use as reported
by us previously(24).

Our previous study (24) also used the compounds in the
test set (third column in Table I) as an external test set for
the classification models generated using the structures from
the training set (second column in Table I). Such cross-set
testing yielded Q values in the range of 63–67% depending
on the classification method used (RP, RF or SVM). A
similar exercise in this study in which SVM models trained
on the training dataset were applied to classify molecules
from the test dataset was performed. The prediction rates

from our analysis indicate a Q value that is essentially in the
same range of 57% to 67% (24) and perhaps this is
indicative of an upper limit of prediction for PXR SVM
based models with this dataset and the descriptors used to
date in these studies.

Mixing MOE descriptors with the original docking
scores did not improve the quality of SVM machine
learning models. These results were in agreement with
the docking results using scoring schemes 3 and 7. This is
understandable since classification based on docking scores
alone produced results only slightly better than random.
On the other hand, merging MOE descriptors with the
Shape Signatures descriptors improved the quality of
predictions when compared with either 1D or 2D Shape
Signature based SVM models (Supplemental Tables I–IV).
Since 1D Shape Signatures account for the overall molec-
ular shape and 2D Shape Signatures characterize molecular
shape and polarity, it was interesting to find that a
combination of MOE descriptors with Shape Signatures
may improve performance with SVM models in this case.
We have performed UFS on the mixed descriptor set to
choose the combination of descriptors for each of the SVM
models (see Supplemental Table VII). Although 2D Shape
Signatures account for the overall MEP of the molecule,
they incorporate specific hydrogen bonding features only
implicitly. Hence, addition of more specific MOE descrip-
tors, such as those associated with hydrogen bonds,
improved the performance of the classification models
(Table I and Supplemental Table II).

In summary, we have shown that creation of a hybrid
docking and molecular descriptor-based method can be used
to improve the prediction accuracy for PXR activators, which
represents a major computational challenge for docking and
scoring programs. The 1D Shape Signature descriptors alone
were found to perform particularly well in this regard giving
61% correct predictions. In addition the overall test set
prediction accuracy for PXR activators with the SVM
classification method was 72% to 81% using a combination
of 1D Shape Signatures descriptors and MOE descriptors,
which was comparable to the results obtained previously with
VolSurf descriptors and SVM (24). Our results also suggest an
apparent ceiling on the prediction accuracy using the same
training and test sets. Future studies will likely test the hybrid
scoring/docking and classification schemes with shape-based
approaches developed in this study with larger external test
sets for PXR. As larger quantitative datasets of PXR
activators become available in the public domain, it may be
feasible to generate QSAR and quantitative scoring methods
for docking that expand on the classification methods
developed here and elsewhere. In addition we will assess
the broader applicability of this hybrid docking and classifi-
cation approach to other proteins. Shape Signatures have
been previously used alone as molecular descriptors with
machine learning methods (25,26). This study has further
broadened the applicability of the Shape Signatures method
to both PXR and in combination with the docking derived
GoldScore. The approach could be useful for filtering
molecule libraries for their potential to cause adverse effects
or drug–drug interactions mediated by PXR or other proteins
of interest in the pharmaceutical and environmental sciences
fields.
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